Design For BT]
Forschungsgemeinschaft

UTURE oG

DFG SPP 1593

Kick-Off Workshop

Programme

September 11" - 14" 2012

Goslar

DFG Priority Programme 1593
Design For Future - Managed Software Evolution

Coordination Board

Prof. Dr. Ursula Goltz
Coordinator

Prof. Dr. Ralf H. Reussner
Co-Coordinator

Prof. Dr. Michael Goedicke
Prof. Dr. Wilhelm Hasselbring

Prof. Dr.-Ing. Birgit Vogel-Heuser

Coordination Assistance

Dipl.-Wirt.-Inform. Lukas Martin
Workshop Organisation

Table of Contents

Apel: Techniques and Prediction Models for Sustainable
Product-Line ENGINEEriNG.....ccccuuuiiiiiiiiiieeeieeeiiiineeeee e 3
Beckert, Klebanov: Regression Verification for Evolving
Object-Oriented SOftWare......ccccveeeeeeeeecciieeeeeee e, 4
Briigge, Paech: Usage- and Rationale-based Evolution
DeCiSION SUPPOIt ..eeeeieeiieeee e 6
Broy, Vogel-Heuser: Model-Driven Evolution Management
Framework for Automation Systems (MoDEMAS)................... 7
Fay, Lamersdorf: Forever Young Production Automation with
Active Components (FYPAZC)ccveeireerieeiieenree e 9
Goltz, Schiirr: Integrated Model-based Testing of
Continuously Evolving Software Product Lines (IMOTEP) 10
Goedicke, Reussner: Concepts, methods and tools for
architecture - and quality-centric evolution of long-living
SOFtWAIrE SYSTEMS woviiiiiiei et 11
Grunske, Tichy: ENsurance of Software evolUtion by Run-time
CErtIfication .ooooevieee e 12
Hasselbring, Pohl, Reussner: Integrated Observation and
Modeling Techniques to Support Adaptation and Evolution of
SOftWAre SYSTEMS ...ccviiiee e 13
Jurjens, Schneider: Beyond One-Shot Security: Keeping
Information Systems Secure through Environment-Driven
Knowledge Evolution (SecVolution)......cccccceveeeevcivieeeeninnennn, 14
Kelter, Taentzer: Specifying and Recognizing Model Changes
Based on Edit Operations........ccccuvveeeeieeiiniiiiiiiiiiieceeee e 15
Koschke, Schmid: Support for correct evolution of software
PrOAUCE lINES .. e 16
Schaefer, Tribastone, Prehofer: Scalable design and
performance analysis for long-living software families 17

Di., 11.9.

Mi., 12.9.

Do., 13.9.

Fr., 14.9.

09:00
09:30

10:00

10:30]
11:00

12:00
12:30]

13:30]

14:00

14:30]

15:30]
16:00

17:00

18:00

19:00

Gemeinsame Aktivitaten (Martin) (40 Min.)

Er6ffnung und Vorstellungsrunde (Goltz)

2 Projektvorstellungen (40 + 10 Min.)
1) Vogel-Heuser, Broy
2) Grunske, Tichy

Benchmarking, Stellenwert von Fallstudien (Hasselbring) (20 Min.)
Vorstellung einer IS-Fallstudie (Reussner) (20 Min.)
Vorstellung einer AS-Fallstudie (Vogel-Heuser) (20 Min.)

Allgemeine Diskussion zu behandelten Fallstudien

Kaffeepause

Kaffeepause

Kaffeepause

4 Projektvorstellungen (80 + 10 Min.)
1) Goltz, Schiirr

2) Goedicke, Reussner

3) Beckert, Klebanov

4) Jiirjens, Schneider

4 Projektvorstellungen (80 + 10 Min.)
1) Apel

2) Fay, Lamersdorf

3) Koschke, Schmid

4) Kelter, Taenzer

Parallel: Diskussionen zu Evolutionsszenarien in behandelten Fallstudien

Informationssysteme (Reussner) |Automa rungstechnik (Vogel-Heuser)

Fazit und Abschluss (Goltz, Reussner)

Mittagessen

Mittagessen

Mittagessen (optional, Selbstzahler)

3 Projektvorstellungen (60 Min.)
1) Hasselbring, Pohl, Reussner

2) Schaefer, Tribastone, Prehofer
3) Briigge, Paech

Motivation Schwerpunkt M&P -
Methods and Processes (Hasselbring)

Motivation Schwerpunkt KCS -
Knowledge Carrying Software (Goedicke)

Diskussion Schwerpunkt M&P

Kaffeepause

Kaffeepause

Diskussion Schwerpunkt KCS

Metaplan-Session (Hasselbring,Martin)

Abendessen

Abendessen

Abendessen

Apel: Techniques and Prediction Models for Sustainable
Product-Line Engineering

Software product line engineering has gained considerable
momentum in recent years, both in industry and in aca-
demia. Companies and institutions such as NASA, Hewlett
Packard, General Motors, Boeing, Nokia, and Philips apply
product-line technology with great success to sustain their
development by broadening their product portfolio, im-
proving software quality, shorting time to market, and be-
ing able to react faster to market changes. However, pursu-
ing a product-line approach implies often an up-front in-
vestment for future benefits. Product-line developers have
to anticipate which features will be desired by customers
in the future. So, prediction models play an important role
to avoid uneconomic developments. However, contempo-
rary prediction models largely ignore structural and be-
havioral properties of the architecture and implementation
assets of a product line. For example, modifying the trans-
action management of a database system is by far more
expensive and risky than modifying its command-line in-
terface. We propose to rethink contemporary prediction
models and to employ state-of-the-art analysis techniques
to create a richer knowledge base for predictions based on
implementation knowledge, including software metrics,
static analysis, mining techniques, measurements of non-
functional properties, and feature-interaction analysis.

Beckert, Klebanov: Regression Verification for Evolving
Object-Oriented Software

The goal of this project is to leverage advances in deductive
program verification to enable regression verification, i.e.,
proving formally that software remains correct through its
evolution, and no new bugs are introduced. We aim to de-
velop a regression verification methodology for a real ob-
ject-oriented language (Java) that has the reach and power
to be applied to real-world software. Even though building
software with high quality from the beginning of the soft-
ware lifecycle is crucial, it is not enough, since long-living
software is adapted and evolves during its development
and after its release. While traditional regression testing
techniques are commonly used to give confidence in the
reliability of evolving software, more powerful and reliable
techniques are required. Over the last decade, there has
been tremendous progress in the area of program verifica-
tion. However, in the development of formal methods not
enough attention has been given to software changes,
which occur during software evolution. A very promising
solution is to develop regression verification methods.
They are a natural extension of regression testing. Given
two programs that are both complex but similar to each
other, much less effort is required to prove their equiva-
lence than to prove that they satisfy a (complex) functional
specification. The effort for proving equivalence mainly
depends on the difference between the programs and not
on their overall size and complexity. Our vision and goal is
to develop regression verification methods powerful
enough to be applicable to real-word software (and its
evolution). We will develop regression verification meth-
ods for Java that can be used to prove that two Java pro-
grams are equivalent. We also address the problem of
changing requirements by proving that two programs are
not fully equivalent but differ in a formally specified way.
We will implement these methods in a regression verifica-

tion system based on our Java verification tool KeY. Re-
gression verification shows its power (and only makes
sense) as part of software evolution. It is central to the
success of the proposed project that we integrate our
methods into the software development and adaptation
process. In particular, we plan to integrate regression veri-
fication with refactoring and reengineering of software,
with software product line techniques, and with test gen-
eration and test selection. Our project thus addresses the
priority programme’s guiding theme of methods and pro-
cesses, contributing to the programme topics of (a) model-
based and model-driven development of long-living sys-
tems, (b) traceability from requirements to architecture
and code, and (c) continuous software system evolution
under design (and to a lesser extent also runtime) control
and management. We link to the application domains using
case studies from the area of information systems, in par-
ticular the priority-programme-wide CoCoME case study.

Briigge, Paech: Usage- and Rationale-based Evolution
Decision Support

For software evolution decisions developers need
knowledge of the current and future deployment context
as well as knowledge of the software and its development
artifacts. Typically this knowledge is documented only
partially and often only in unrelated fragments, and there-
fore it is not fully exploitable. In addition, the reasoning
underlying the decisions made in previous releases can
also change. Thus, it is an important challenge to ease the
capture of this knowledge and to improve the decision
process. The vision of the URES project is a continuous
decision process over the whole software life-cycle where

* Developers reflect the actual user behavior in their evolu-
tion decisions. User behavior is automatically captured
during operation and related to system models so that
necessary changes to the software can be identified.

e Developers reflect system, project and operation
knowledge in their long-term decisions and in particular
the rationale of decisions made for previous releases. Links
between system, project and operation knowledge are au-
tomatically captured and maintained. This allows provid-
ing consistent linkage between decisions and artifacts (incl.
code) through rationale so that the impact of changes of
the artifacts on the decisions and vice versa can be ana-
lyzed.

To empirically validate this vision we will develop corre-
sponding methods and tools and apply them both, in a re-
search environment and in an industrial case study, to a
long-running system.

Broy, Vogel-Heuser: Model-Driven Evolution Manage-
ment Framework for Automation Systems (MoDEMAS)

Automation systems constitute multi-disciplinary, soft-
ware-intensive and long-living systems. System modifica-
tions to meet a constantly changing set of requirements
(also called evolution steps in this proposal) regularly re-
quire long downtimes and critical test phases upon start-
up. Hence, changes in the automation system have to be
avoided whenever possible. As current and future markets
demand higher flexibility regarding customer specific
products (up to lot-size one concepts), the time between
evolution steps needs to be decreased drastically. In fact, it
is expected that in the future evolution of automation sys-
tems has to be managed in day-to-day routine. This project
aims at enabling this routine through a model-driven engi-
neering methodology including respective engineering
process models and formalisms (1) to define and structure
system requirements and (2) to describe and analyze sys-
tem architectures and component structures/behavior.

Therefore, typical evolution scenarios and established pro-
ject execution strategies and work practices are studied
initially. The analysis results serve as the basis for develop-
ing a respective model-driven engineering method. There-
fore, FOCUS - a well-elaborated model-based engineering
methodology particularly suited for developing reactive
software systems - is adapted substantially to meet the
particular requirements of evolution in the automation
system domain regarding both content and usability. In
particular, the provided formalisms are extended to cap-
ture cross-discipline architectural, structural and behav-
ioral system aspects that need to be preserved along the
lifecycle of automation systems. Based on a rigorous sys-
tem model complementary analysis techniques are studied,
which allow verifying system properties and validating
system designs and their respective model-based imple-
mentations early in the evolution process. Finally, a model

of the resulting engineering process and respective engi-
neering methods is derived with the goal to facilitate estab-
lishing the proposed framework within organizations.

Fay, Lamersdorf: Forever Young Production Automa-
tion with Active Components (FYPAZC)

Software in productive use suffers from degeneration,
caused e.g. by changing usage conditions or ad-hoc modifi-
cations not reflected in the latest software specifications.
The FYPAZC project aims at addressing such software de-
generation by an “anti-aging cycle” that perpetually rein-
forces the consistency of software specifications, their cor-
responding implementations, and their actual usage. Main
contributions are (1) a combined meta-model for produc-
tion automation software and verifiable requirements, (2)
automated improvement of requirements specifications by
learning from actual system behaviour, and (3) an infra-
structure for online monitoring and simulation-based vali-
dation of requirements. The meta-model is based on “Ac-
tive Components” and allows to specify the application, the
underlying technical production process, and the require-
ments in ways in which they can be validated by corre-
sponding test cases. Based on the knowledge of the system
components and the production process, an online moni-
toring and learning infrastructure will continuously ana-
lyze and store system behaviour. When applying modifica-
tions to the software, it can be tested against all specified
and learned requirements using the simulation-based vali-
dation. As a result, software developers and system opera-
tors are provided with an approach and tool suite for man-
aging knowledge about software usage and requirements
in order to keep such software “forever young”.

Goltz, Schiirr: Integrated Model-based Testing of Con-
tinuously Evolving Software Product Lines (IMoTEP)

Automation engineers are regularly faced with the prob-
lem to maintain long living safety critical process control
software families. A promising paradigm for developing
this type of software efficiently is (dynamic) software
product line (SPL) engineering; it supports the systematic
development of software product families of similar appli-
cations. However, existing SPL approaches offer only little
support for integrated quality assurance and evolution of
software over time. In particular, there exist only few ap-
proaches and no concise methodology for testing evolving
SPLs and their applications until now. For automation sys-
tems, there is a particular need for such a support, since
here modifications often have to be conducted under hard
safety constraints—sometimes even in a running system.
We hence propose an approach for managed dynamic SPL
evolution in the automation engineering domain with a
particular focus on efficient model-based testing tech-
niques. SPL test suites needed for (1) systematic offline
testing of representative sets of products in their develop-
ment environments and (2) online testing of reconfigurat-
ing products in their runtime environments are generated
and incrementally updated using a mixture of model
checking, constraint solving, and model transformation
techniques. Integrated general purpose feature modeling
and domain-specific (test) modeling languages are used
together with standard model- and new feature mod-
el/interaction-based coverage criteria for that purpose.
The involved models and their metamodels as well as the
associated model processing algorithms are used both at
design and runtime. The overall aim is to support both
predefined reconfigurations of products and unforeseen
evolution of full product lines with a specific focus on the
adaptation of their test suites.

10

Goedicke, Reussner: Concepts, methods and tools for
architecture - and quality-centric evolution of long-
living software systems

Nearly all aspects of our live are affected by long-living
software systems. Software is aging when necessary
changes are not performed to meet the requirements in its
changing environment, or when the software is changed in
a problematic way. These processes are part of the soft-
ware evolution. The typical approach to meet evolution in
current software projects is ad-hoc change of the imple-
mentation, often ignoring other development artifacts (i.e.
requirement documents and design models), and without
evaluating evolution alternatives. Software evolution can
become problematic, because aging software is hard to
maintain and it does not meet increasing external quality
requirements, such as improved performance and in-
creased reliability. For increasing the maintainability of
software, the development artifacts need to be consistent
with each other and up-to-date. To meet increasing exter-
nal quality requirements and to account for changes in the
environment, the system has to be changed regularly. The
goal of this project is to develop concepts, methods, and
tools for keeping the consistency between the develop-
ment artifacts, and for systematically identifying and per-
forming the necessary changes on a system to meet the
quality requirements in a changing environment. With this
means, the manageability of software evolution will be
enhanced. Thus this work addresses the often negative
interference between external (performance, reliability)
and internal (maintainability) quality requirements. Our
methods and tools will be evaluated using case studies
from the information systems domain.

11

Grunske, Tichy: ENsurance of Software evolUtion by
Run-time cErtification

Quality attributes play an important role in different clas-
ses of software systems, e.g. safety in embedded systems
and performance in business information systems. Cur-
rently, quality requirements are typically checked at design
time. For evolving systems with changing environmental
conditions this leads to the problem that the system may
behave differently with respect to quality attributes than
analyzed at design time. We propose to address this prob-
lem by developing a holistic model-driven approach, which
treats quality evaluation models as first class entities. This
approach uses dedicated model transformations to evolve
quality evaluation models with structural and behavioral
models. Furthermore, the models will be continuously up-
dated with statistical monitoring techniques to estimate
model parameters like usage profiles and failure rates. As a
result of this approach, we will be able to certify software
evolution steps with consistent models.

12

Hasselbring, Pohl, Reussner: Integrated Observation
and Modeling Techniques to Support Adaptation and
Evolution of Software Systems

The increased adoption of service-oriented technologies
and cloud computing creates new challenges for the adap-
tation and evolution of long-living software systems. Soft-
ware services and cloud platforms are owned and main-
tained by independent parties. Software engineers and
system operators of long-living software systems only have
limited visibility and control over those third-party ele-
ments. Traditional monitoring provides software engineers
and system operators with execution observation data
which are used as basis to detect anomalies. If the services
and the cloud platform are not owned and controlled by
the engineers of the software systems, monitoring the exe-
cution of the software system is not straightforward.

The aim of the iObserve project is to develop and validate
advanced techniques which empower the system engi-
neers to observe and detect anomalies of the execution of
software systems they do not fully own and control. It will
extend and integrate previous work on adaptive monitor-
ing, online testing and benchmarking and will use mod-
els@runtime as means to adjust the observation and
anomaly detection techniques during system operation. To
demonstrate the feasibility and potential benefits gained
and for providing feedback to guide the research, the re-
sults will be continuously evaluated using an established
research benchmark (CoCoME) as well as an industry-
driven open-source application (Eclipse Skalli) that runs
on a cloud platform.

13

Jiirjens, Schneider: Beyond One-Shot Security: Keeping
Information Systems Secure through Environment-
Driven Knowledge Evolution (SecVolution)

Information systems are exposed to constantly changing
environments which require constant updating. Software
"ages" not by wearing out, but by failing to keep up-to-date
with its environment. Security is an increasingly important
quality aspect in modern information systems. At the same
time, it is particularly affected by the above-mentioned risk
of "software ageing". When an information system handles
assets of a company or an organization, any security loop-
hole can be exploited by attackers. Advances in knowledge
and technology of attackers are part of the above-
mentioned environment of a security-relevant information
system. Outdated security precautions can, therefore, per-
mit sudden and substantial losses. Security in long-living
information systems, thus, requires an on-going and sys-
tematic evolution of knowledge and software for its pro-
tection. Our objective is to develop techniques, tools, and
processes that support security requirements and design
analysis techniques for evolving information systems in
order to ensure "lifelong" compliance to security require-
ments. We will build on the security requirements & design
approach SecReq developed in previous joint work. As a
core feature, this approach supports reusing security engi-
neering experience gained during the development of se-
curity-critical software and feeding it back into the devel-
opment process. We will develop heuristic tools and tech-
niques that support elicitation of relevant changes in the
environment. Findings will be formalized for semi-
automatic security updates. During the evolution of a long-
living information system, changes in the environment will
be monitored and translated to adaptations that preserve
or restore its security level.

14

Kelter, Taentzer: Specifying and Recognizing Model
Changes Based on Edit Operations

Model-based software development has become a widely
accepted approach for embedded systems and in applica-
tion domains where software must be maintainable and
long-living. Models are subject to continuous change and
have many versions during their lifetime. The specification
and recognition of changes in models is the key to under-
stand and manage the evolution of a model-based system.
However, currently available versioning tools operate on
low-level, sometimes tool-specific model representations.
The resulting differences are often not understandable. It
is a largely open problem how to use high-level edit opera-
tions, e.g. as offered by modern refactoring tools, to pre-
sent and handle model differences and to analyse the evo-
lution of models. The tight integration of editing and ver-
sioning tools requires consistent specifications of edit op-
erations; this integration is another open problem. This
project adresses both problems by consistently lifting
model versioning concepts, techniques, and tools from
low-level to high-level model changes. All concepts shall be
formalized by graph transformation concepts in order to
reason about complex model modifications and their inter-
relations. Our approach will be implemented and evaluated
based on the widely used Eclipse Modeling Project.

15

Koschke, Schmid: Support for correct evolution of
software product lines

Today software is often developed as a set of related prod-
ucts that are derived from a common infrastructure, a so-
called software product line. A major issue in product line
engineering is the continuous evolution of the product line
as all products are intimately connected and the total life-
time of a product line is longer than that of any of its de-
rived products.

In this project, we will study long-living software product
lines and their continuous evolution with a specific focus
on embedded systems and in particular industry automa-
tion systems. In these domains, variability is often imple-
mented statically through preprocessor directives or dy-
namically through setting configuration variables at initial-
ization time or later at runtime. Despite their relevance,
these variability techniques are still only insufficiently re-
searched.

We will develop techniques to check the integrity of a
product line implementation whenever it is changed dur-
ing its evolution. That is, as opposed to most other work on
the analysis of product lines, the focus will not be on the
analysis of one particular version of a product line, but on
the difference introduced when modifying a product line.
The project will combine reverse engineering, program
analysis, and formal product line analysis to discover the
introduction of flaws through evolutionary changes. These
flaws often arise from unintended side effects of evolution
activities related to a feature.

The project will take a comprehensive approach, taking
into account maintenance actions related to the variability
model as well as implementation changes and also from
combinations of both.

16

Schaefer, Tribastone, Prehofer: Scalable design and
performance analysis for long-living software families

Long-living software systems are typically available in a
rich set of variants to deal with differing customer re-
quirements and application contexts. Furthermore, users
are often given the possibility to change to a different con-
figuration online to dynamically adapt to varying environ-
mental conditions. In addition to satisfying functional re-
quirements, such changes are to preserve existing service-
level agreements. The focus of this project is to define a
methodology for expressing system variability and its im-
pact on performance. Motivated by its widespread use in
certain domains, we consider a model-driven approach
based on behavioral models, using notions of delta model-
ing and feature composition enriched with information
needed to automatically derive a performance model. We
are concerned with the usually very large number of varia-
tions in models of realistic systems, which impede naive
approaches based on exhaustive exploration for predictive
purposes, especially at runtime when requirements on
execution times are stringent. We offer a symbiotic ap-
proach which harnesses a structure of variability inferred
by deltas to efficiently analyzing the whole configuration
space, for instance by pruning certain subspaces with
provably inferior estimated performance. The approach
will be practically applied to the dynamic throughput op-
timization of a software-controlled automated assembly
line, chosen as a representative case study of variant-rich
long-lived software systems where changes are ideally
applied online to avoid costly interruptions.

17

